FIXED BIOFILM WASTEWATER TREATMENT Pathogen Reduction

Dr. Barbara Hartley Grimes NonPoint Source Program Coordinator Onsite Wastewater Section DEH/ NCDENR 18th Annual Onsite Conference

Wastewater treatment

based on attached microbial growth

Support materials

a wide variety

Two important factors

- flow of wastewater
- size of support material particles

Variety of Fixed Film Filters

FIXED BIOFILM WASTEWATER TREATMENT Pathogen Reduction

Fixed media

- sand
- gravel
- plastic
- activated carbon
- peat
- other

FIXED BIOFILM WASTEWATER TREATMENT Pathogen Reduction

"Trickle" Filters

- sand
- gravel
- plastic
- activated carbon
- peat
- other

FIXED BIOFILM WASTEWATER TREATMENT Pathogen Reduction Single Pass Filters

- Peat
- Pea gravel
- Crushed glass
- Experimental media
- Sand (the best understood and most predictable)

FIXED BIOFILM WASTEWATER TREATMENT Pathogen Reduction

RMF Recirculating Media Filters

- Sand (most widely used)
- Peat
- Textiles

> Rotating cylinders with attached biofilm in wastewater flow

Submerged Filters

Fixed Film Filters Their Biofilms in Relation To Pathogen Reduction

FIXED BIOFILM WASTEWATER TREATMENT *Biofilms*

Biofilms are highly stratified with microbes and matrix

Microorganisms attach to solid materials

- Microorganisms can reach high concentrations
- Microbial growth rates depend upon
 - flow rates
 - size and geometric configuration of particles
 - (more surface area of particles = more growth surface)

FIXED BIOFILM WASTEWATER TREATMENT *Biofilms*

Biofilm/Zoogleal (animal gunk) film formation

- bacteria
- fungi
- algae
- protozoa
- nematodes
- rotifers
- annelid worms (mini- aquatic earthworms)
- insect larvae/filter fly larvae

Biofilms/Zoogleal Film Formation & Function in Pathogen Reduction

🖉 Bacteria

Second Contract Second Contrac

∝ Algae

🖉 Protozoa

(grazers/predators/absorbers)

www.microscopy-uk.org.uk

Biofilms/Zoogleal Film Formation & Function in

Nematodes Pathogen Reduction

- feed on floc
- ingestion
 - farm biomat
- Z Rotifers

http://www.yorkcity.org/

cityservices/wwtp/micro.htm

- (+)ingestion/filtering
- (-)protection of pathogens

Biofilms/Zoogleal Film Formation & Function in Pathogen Reduction Annelid worms (mini-earthworms)

<u>http://www.yorkcity.org/</u> citvservices/wwtp/micro.htm

- plow through floc
- ingest floc

Filter fly larvae

- graze biomat
- promote biomat turnover

http://www.arrowpestcontrol.com/pages/drain

(&adults)

FIXED BIOFILM WASTEWATER TREATMENT Biofilms/Zoogleal Film and Sloughing

- As biofilms develop organisms in the deepest layers lose access to nutrition and may die -off
- Then the biofilm may/does slough off
- The fragments of biofilms carry:
 - the outer attached treatment organisms
 - any attached pathogens with them.

Biofilms/Zoogleal Film Function in Pathogen Reduction

Filtration (packed beds)

Adsorption to biofilm matrix

- (some layers polyanionic)
- pathogens can be stuck in the "gleal goo"

Biofilm organisms

- eat/ingest/digest some pathogens
- however the pathogens can be protected inside body
- can overgrow and clog

Sloughed biofilms

- end up in clarifier
- in systems without clarifier ---on to dispersal

Wastewater Pathogens General Groups

Pathogens : General groupings

For this presentation all of the following are called PATHOGENS

Sometimes they are divided into two groups:

- Those called Pathogens
 - Viruses
 - Bacteria
 - Fungi
- Those called Parasites
 - Protozoa
 - Helminths (Roundworms & Tapeworms)

Pathogens : General Size ranges

+ Virus

particles

particle size 20-100nm

spore size

spore size

- Bacteria spores
- 🕆 Fungi

spores

+ Protozoa

cysts

cyst size 10-100's microns

1-3-microns

~5

microns

Helminths

roundworm (ova)eggs 50-100 microns// worm inches - 1 +ft tapeworms (ova)eggs 50- 100 microns

Pathogens : Infectious Doses****

+ Virus

Various

1-10 particles

+ Bacteria

<u>Shigella</u> 10 - 100 spores cholera 1,000 - 10,000,000

<u>Campylobacter</u> 100-1,000,000

Protozoa

Cryptosporidium 1 oocyst

(10 in healthy volunteers)

<u>Giardia</u>

10-100 oocysts

+ Helminths

roundworms (embryonated) tapeworms 1-10 eggs

1-800 eggs

Wastewater Pathogen Indicators

Criteria for Ideal Microbial Indicator

Wastewater Microbiology:2nd edition 1999

- Member of the intestinal microflora of warm-blooded animals
- Should be present if pathogens are present, and absent in uncontaminated samples
- Should be present in greater numbers than the pathogens
- Should be at least equally resistant as the pathogens to environmental insults and to disinfection in water and wastewater treatment(s)
- Should not multiply in the environment
- Should be detectable by means of easy, rapid, and inexpensive methods
- Should be nonpathogenic

FIXED BIOFILM WASTEWATER TREATMENT Pathogen Reduction

Microbial Indicators of Fecal Contaminants

- Viral :Bacteriophage (viruses)
- **Bacterial** (used for the rest of pathogens):
 - Total Coliforms
 - Fecal Coliform Bacteria
 - Fecal Streptococci
 - Anaerobic Bacteria
 - Clostridium, Bifidobacteria, etc.

FIXED BIOFILM WASTEWATER TREATMENT Pathogen (microbial) Indicators

VIRAL INDICATORS:

- environmental detection
- assessing pathogen removal
- by wastewater treatment
- F-specific bacteriophages
 - indicator of wastewater
- Bacteriophage of Bacterioides spp.
 - Chlorine resistant/ some wastewater usefulness

Bacteriophage from Cells Alive

FIXED BIOFILM WASTEWATER TREATMENT Pathogen (microbial) indicators Total Coliforms (bacteria)

- Aerobic and facultative anaerobic , gram neg, rod shaped, nonspore formers
- Include Escherichia coli, Enterobacter, Klebsiella etc.
- Less sensitive than viruses or protozoa to env/ disinfection
- Some may regrow (not all detected)

Fecal Coliforms (bacteria)

- All thermotolerant and ferment lactose (44.5C)
- Vertebrate Guts
- E. coli, Klebsiella, etc. :
- Survival pattern similar to path bacteria
- Less resistant than viruses or protozoan cysts to disinfection and environmental conditions

FIXED BIOFILM WASTEWATER TREATMENT Pathogen (microbial) indicators

Fecal Streptococci

- <u>Streptococcus</u> 4 species
- subgroup enterococci : <u>S. faecalis</u> and <u>S. faecium</u> useful for viruses, especially in sludge and seawater

🖉 Anaerobic Bacteria

- <u>Clostridium perfringens</u> (viruses & protozoan cysts)
 - useful as a tracer
- Bfidobacteria fecal indicator in the environment
- <u>Bacterioides</u> sp., fecal contamination of water

SOME EFFLUENT NUMBERS

Pathogen Concentration in Raw Wastewater / 100ml

🥢 Virus	100-50,000 particles	
🥖 Bacteria	<u>Shigella</u>	1- 1,000
	<u>Salmonella</u>	400-8,000
🥖 Protozoa	<u>Cryptosporidium</u>	1-10,000
	<u>Giardia</u>	50-10,000
Helminths		
- roundworms		1-1,800
-tapeworms		not a good number available

Pathogen Concentration in Septic Tank Effluent / 100ml

✓ Virus 0 - 10⁵ e.g. hepatitis, polio, coxsackie, coliphage
 ✓ Bacteria 10⁶ - 10⁸ e.g. <u>Salmonella.</u> Shigella, etc..

- 🖉 Protozoa
- Z Helminths
 - roundworms
 - tapeworms

Pathogen Indicators Concentration in Septic Tank Effluent / 100ml

∝ Viruses

specific 0 - 10⁷ pfu (episodic high levels)

Fecal Coliforms

10⁵ - 10⁸ (EPA 600/2-78)

Fecal Streptococcus 10⁴ - 10⁵ (EPA 600/2-78)

FIXED FILMS FILTERS

PATHOGEN REDUCTION DATA

FIXED BIOFILM WASTEWATER TREATMENT Pathogen Reduction KENNG FILTER SYSTEMS

- septic tanks
- fixed film reactor
- clarifier (excess biomass)
- optional recirculation of effluent

FIXED BIOFILM WASTEWATER TREATMENT Pathogen Reduction Trickling filter

- EPA manual -
 - 1 2 log reduction fecal coliforms
 - says require minimum effluent disinfection for surface effluent requirements
- Bitton summarizes
 - that removal rate generally lower than activated sludge

FIXED BIOFILM WASTEWATER TREATMENT Pathogen Reduction TRICKLING FILTERS Viruses/ viral indicators

Viruses

- generally low and erratic removal
- e.g. 59 91%
- eg 0 20 % removal . Yet high coliform >90%
- e.g. Efficiency of viral removal lower than coliforms
- Bacteriophage
 - erratic also
 - 40 90%
 - depends upon season

FIXED BIOFILM WASTEWATER TREATMENT Pathogen Reduction

TRICKLING FILTERS : Pathogen removal erratic

Virus : 59 - 95% ; phage 40 - 90%

- fecal coliform indicators -e.g. (0-20% viruses ; >90%fecal)
- Lewis, Austin, Loutit, Sharples (1986) no significant red. In fecal coliforms or viruses.

Bacteria

- vary from 20 >90%, depending upon the operation
- Salmonella 73 95% (Feacham et al 1983)
- gen. 20-90% some pathogenic species removal lower

Protozoa

• Giardia, Entamoeba 74-91%

- Protozoan Entamoeba histolytica
 - 71 91% in India
- Protozoan Giardia lamblia
 - similar removal rates as <u>E. coli</u>
 - 4- 44 cysts/L in the effluent
(General according to Gabriel and Bitton 1999)

- Low and erratic removal of pathogens and parasite
- filtration rate great affects the removal rate, lower rate = greater removal

Rotating Biological Contactors

- not much is known about pathogen removal
- one study by Sagy and Kott 1990 one log removal of fecal coliforms and <u>Salmonella</u>

- blue green algae helped? Reduce #'s

Sagy and Kott 1990. Efficiency of rotating biological contactors in removing pathogenic bacteria from domestic sewage. Water Res. 24:1125 - 1128.

- Rotating Biological Contactors (called rotating trickling filter)
 - Clarke and Chang 1975 Applied Microbiology 30:223 228
 - partially removed three types of viruses
 - low flow rates 85-94% removal
 - hi flow rates 59-81% removal
 - in this system fecal coliform and fecal streptococci are appropriate for estimating some viral reductions.

FIXED BIOFILM WASTEWATER TREATMENT Pathogen Reduction SAND FILTERS - single pass

- viruses from 0- 10⁷ to 0 10⁷ pfu / 100 ml (episodic high) (Siegrist 2001)(no reduct.)
- bacteria depending upon sources/media size:
 - reduced to 10³ 10⁴ fecal coliform 100 ml
 - reduced to 10 100 fecal coliform / 100 ml
 - from 10⁶ 10⁸ to 10 10³ FC (Siegrist 2001)
 - (under drains) reduced to < 200 cfu/100ml
 Gustavson etal.(works with high cleaning rate)
 - June 2001 Lake Wash and Duluth MN -

» 4 sand filters <200 cfu/100ml

FIXED BIOFILM WASTEWATER TREATMENT Pathogen Reduction SAND FILTERS - single pass (cont)

- Protozoa (assume pore size< protozoan)
 - Use for <u>Giardia in</u> water supplies
 - Used for <u>Cryptosporidium</u> in water supplies careful with the backwash (Milwaukee)
- Helminth eggs <1/L Mexico City study(1999)

- RMF Recirculating Media Filters
 - Bitton: Because of the larger media size does not remove fecal coliforms as effectively as single pass. Need coarse media for higher loading rates.
 - Christopherson, Gustavson, Anderson. Found sand RMF reduction from 10⁹ 10¹² to 5,000 10⁵ fecal coliform still need be applied to soil infiltration systems (no biomat forms)
 - recirculating sand 2 systems MN2001 <200 fc/100ml.

✓ PEAT FILTERS

- Gustavson (MN) < 1,000 cfu/100ml FC
- Modular peat- Geerts, et al,2001
 - fc 94-99% reduction
 - viral 0-20% reduction
- N. Small Flows -2001 10⁶ to 10³ 99%FC
- Lake Washington/Duluth 2001 4 peat <200fc/100ml
- City of Austin 2001 3-4 log reduction

FIXED BIOFILM WASTEWATER TREATMENT FOAM : TEXTILE FILTER EFFLUENT

- Viruses

- 0-10⁷pfu/100ml tank
- 0 10⁷ pfu / 100ml filter effluent
- episodically high
- bacteria FC -
 - 10⁵ 10⁸ /100ml in tank to
 - 10 10³/100 ml in filter effluent
- ® Fuzzy Film for helminth eggs Mexico city study effluent <1 egg/l</p>

- Sequential units
 - fixed biofilm
 - suspended biofilm

Some final thoughts.....

- Adsorptions to solids most effective in reducing viral loads
- Larger organisms better reduced with smaller pore sizes like sand filtration
- Minnesota as of June 2001 developing protocols for viral pathogen surrogates and bacterial surrogates....for methods to address need more of the comparatives studies
- Need information on infectivity of pathogens after treatment, not just the numbers.
- Developing pathogen mimics for all pathogens a new study in NC.

Pooper Scooter Highboy - - - ->

Racing model for the daring senior

